Abundant Robotics raises $10 million to commercialize its apple-picking robot

Brnice Magistretti for VentureBeat: Picking apples may seem like a fun weekend activity, but its actually backbreaking manual labor. Abundant Robotics wants to help agricultural growers shoulder this task and today announced funding of $10 million, led by GV, to commercialize its apple-picking robot.

Wireless Electric Planters Optimize Crop Yield

Coupled with the electrification of farming vehicle systems and rising seed costs, the farmer faces a unique challenge: accurately planting seed in order to optimize crop yield.

More Farmers Considering Drone Use

Hoosier Ag Today: A new poll finds 21 percent of farmers plan to operate a drone this year. The poll found 21 percent of farmers will operate the drone themselves, while another 12 percent of farmers indicated they would opt for a third-party entity to fly drones.

Soft Robotics debuts new vision system

Ashley Nickle for The Packer: SuperPick - short for supervisory picking - aims to provide the depth perception and recognition of 3-D using 2-D hardware and human oversight.

Why Robotics Will Change Agriculture

Rob Trice & Seana Day via Forbes: Last month as our Mixing Bowl colleagues Michael Rose and An Wang were interviewing Sonny Ranaswamy of the USDAs NIFA to better understand current US food and agriculture labor issues, we were representing The Mixing Bowl in discussions on potential solutions to food production labor issues through automation and robotics. At this years RoboUniverse event in San Diego there was a full-day track on December 14th dedicated to the application of robotics to agriculture. The industry track, pulled together in great part by Nathan Dorn, CEO of Food Origins and an Advisor to The Mixing Bowl, featured a knowledgeable group of automation/robotics experts and food producers who drew on their experience to define the opportunities and sharpen focus on the challenges. Nathan authored a detailed summary of the day in a post on Agfunder. Our conclusion is that there is no denying that we are still in the early days of adoption of robotics in agriculture. Cont'd...

Automating One Acre Under Glass

Richmond Nursery in Ontario Saves More Than $50,000 a Year Using an Leviton Environmental Control System

Reviving Japan's Dairy Industry, One Milking Robot at a Time

Aya Takada for Bloomberg: Jin Kawaguchiya gave up a career in finance to help revive Japans ailing dairy industry -- one robot at a time. In a country that relies increasingly on imported foods like cheese and butter, Japans milk output tumbled over two decades, touching a 30-year low in 2014. Costs rose faster than prices as the economy stagnated, eroding profit, and aging farmers quit the business because they couldnt find enough young people willing to take on the hard labor of tending to cows every day. But technology is altering that dynamic. On the northern island of Hokkaido, Japans top dairy-producing region, Kawaguchiya transformed the 20-cow farm he inherited from his father-in-law 16 years ago into Asias largest automated milking factory. Robots extract the white fluid from 360 cows three times a day and make sure the animals are fed and healthy. The machines even gather up poop and deposits it in a furnace that generates electricity. Cont'd...

MIT Food Computers

From MIT: The Food Computer is a controlled-environment agriculture technology platform that uses robotic systems to control and monitor climate, energy, and plant growth inside of a specialized growing chamber. Climate variables such as carbon dioxide, air temperature, humidity, dissolved oxygen, potential hydrogen, electrical conductivity, and root-zone temperature are among the many conditions that can be controlled and monitored within the growing chamber. Operational energy, water, and mineral consumption are monitored (and adjusted) through electrical meters, flow sensors, and controllable chemical dosers throughout the growth period. Each specific set of conditions can be thought of as a climate recipe, and each recipe produces unique results in the phenotypes of the plants. Plants grown under different conditions may vary in color, size, texture growth rate, yield, flavor, and nutrient density. Food Computers can even program biotic and abiotic stresses, such as an induced drought, to create desired plant-based expressions... (project homepage)

Japanese Firm To Open World's First Robot-run Farm

Spread , a vegetable producer, said industrial robots would carry out all but one of the tasks needed to grow the tens of thousands of lettuces it produces each day at its vast indoor farm in Kameoka, Kyoto prefecture, starting from mid-2017. The robots will do everything from re-planting young seedlings to watering, trimming and harvesting crops. The innovation will boost production from 21,000 lettuces a day to 50,000 a day, the firm said, adding that it planned to raise that figure to half a million lettuces daily within five years. "The seeds will still be planted by humans, but every other step, from the transplanting of young seedlings to larger spaces as they grow to harvesting the lettuces, will be done automatically," said JJ Price, Spreads global marketing manager. The new farm - an extension of its existing Kameoka farm - will improve efficiency and reduce labour costs by about half. The use of LED lighting means energy costs will be slashed by almost a third, and about 98% of the water needed to grow the crops will be recycled. The farm, measuring about 4,400 sq metres, will have floor-to-ceiling shelves where the produce is grown... ( cont'd )

Greenbot: Driverless Tractor

From Greenbot: The Greenbot was introduced at the Agritechnica 2015 trade fair. The Greenbot is the first driverless machine to be developed especially for professionals working in the green sector who have to carry out repetitive tasks on a regular basis, such as working in fruit cultivation, horticulture, agriculture, or the municipal sector. The software that controls the fourwheel steering and hydraulic four-wheel drive system is userfriendly, safe and reliable. The Greenbot can be programmed to function fully independent and can be used to replicate tasks recorded in advance using a tractor with a driver. Programs can also be activated using the remote control, and then the Greenbot repeats the instructions. This mode is called 'Teach & Playback. The Greenbot is furthermore able to independently plan its own route and operations for specific applications, such as spraying orchards or mowing public green areas... ( site )

Driverless Tractors and Drones to be Among the Key Applications for Agricultural Robots

The worldwide market for the agricultural robot has seen a boost in 2015 and many new products that are in field tests are expected to be commercially available by 2016.

Robot Can Pick and Sort Fruit

A robotics breakthrough by product design and development firm Cambridge Consultants is set to boost productivity across the food chain - from the field to the warehouse. It paves the way for robots to take on complex picking and sorting tasks involving irregular organic items - sorting fruit and vegetables, for example, or locating and removing specific weeds among crops in a field. "Traditional robots struggle when it comes to adapting to deal with uncertainty," said Chris Roberts, head of industrial robotics at Cambridge Consultants. "Our innovative blend of existing technologies and novel signal processing techniques has resulted in a radical new system design that is poised to disrupt the industry."

Advances in farming robotics could address shortage in agricultural workers

By Steve Brachmann for IPWatchDog: More and more, the agricultural world is looking towards the mechanization of labor processes through robotics as a way of potentially increasing their productivity. Robotics was identified as a sector of investment growth in agricultural tech by an April 2014 white paper on agriculture technologies published by the entrepreneurship and education non-profit Kauffman Foundation. Robotics is a regular focus of ours here on IPWatchdog, most recently visited in our coverage of the incredible advancements in walking and jumping robotics pioneered by Boston Dynamics, a Google Inc. (NASDAQ:GOOG) subsidiary. With American farmers already heavily involved in the regulatory conversation involving the commercial use of unmanned aerial vehicles (UAVs), or drones, we thought that it would be interesting to delve into the world of farming robotics and see the recent advances in that particular field. Its important to understand first that the robotics being developed for commercial use on farms wont be stand-alone humanoid units ranging through fields to pick crops. Any piece of hardware implementing an algorithm which automates some of the manual work of farming falls under this heading. One good example of this is the LettuceBot, a precision thinning technology which works to visually characterize plants in a lettuce row, identify which plants to keep and eliminating unwanted plants to optimize yield. The unit doesnt move by itself but is guided along by a tractor instead. The technology has been developed by Blue River Technology of Sunnyvale, CA, a company which has attracted $13 million in investment between 2011 and 2014 to commercialize this product. The LettuceBots creators hope toprovide the technology as a third-party service to farm owners before manufacturing the unit for commercial sale. Cont'd...

Stony Brook University Helps Prepare Next Generation of Farmers by Introducing a Hydroponic 'Freight Farm' On Campus

Cited as 4th most environmentally responsible university* in 2015, SBU is first higher ed campus to get a Freight Farm.

AgBot 2016 Powers $50,000 Grant for Grizzly RUV

Although farming has become mechanized, the evolution of agricultural techniques to include unmanned robots provides a unique opportunity.

Records 1336 to 1350 of 1352

First | Previous | Next | Last

Featured Product

Innovative SWIR camera for UAV based spectral remote sensing

Innovative SWIR camera for UAV based spectral remote sensing

Allied Vision's compact and light weight Alvium SWIR (short wave infrared) cameras are the ideal choice to build cost-effective OEM systems used in embedded and machine vision applications. The cameras support a spectral range from 400 nm to 1700 nm at high quantum efficiencies. This allows to capture images in both the visible and SWIR spectra with a single camera and enables users to reduce overall system costs! Equipped with Sony's IMX990 and IMX991 SenSWIR InGaAs sensors, Alvium SWIR cameras deliver high image quality and frame rates. This makes them well suited for drones or handheld devices used in various industries such as, agriculture, mining, solar cell inspection or medical.